サブピコ秒パルスラジオリシス法によるテトラヒドロフラン溶媒和電子とフッ素高分子反応 測定

産研量子ビーム物質科学分野 ^a、北海道大学大学院工学研究院/工学部/大学院工学院 b

山本洋揮 a、岡本一将 b、野村直矢 b、梅垣 菊男 b、古澤 孝弘 a

Measurement of Solvated Electrons in Tetrahydrofuran and Fluorinated Polymer Using Sub-picosecond Pulse Radiolysis System

Dept. of Beam Materials Science, The Institute of Scientific and Industrial Research, Osaka University^a, Faculty/ Graduate School/ School of Engineering, Hokkaido University^b

Hiroki Yamamoto^a, Kazumasa Okamoto^b, Naoya Nomura^b, Kikuo Umegaki^b, Takahiro Kozawa^a

Quantum beam nanolithography such as extreme ultraviolet (EUV) and electron beam (EB) lithography is expected as next generation lithography (NGL) technology. In order to develop resist materials, it is very important to understand the interaction between quantum beam and materials. We has already reported a sub-picosecond pulse radiolysis system was improved by introducing a TOPAS Prime automated optical parametric amplifier (OPA). We succeeded in the observation of solvated electron in tetrahydrofuran and dissociaative electron attachment in 1300 nm.

極端紫外光(EUV)リソグラフィのような放射線を利 用した微細加工技術は、半導体産業および将来の ナノテク産業を支える重要な技術である。それゆえ、 ナノメーターサイズの微細加工を可能にする材料を 開発するためには、放射線と材料の相互作用の解明 が必要不可欠である。

放射線と材料の相互作用の解明する方法の一つ に、分光分析がある。この手法は、短パルス加速器 の最大の応用分野の一つである。我々は、放射線化 学初期過程の研究を行うために、励起源としてフェム ト秒電子線ライナック、分析光源としてフェムト秒チタ ンサファイアレーザー、および両者の時間差を正確 に測定するためのフェムト秒ストリークカメラから構成 されるサブピコ秒パルスラジオリシスシステムを開発し た。¹⁾⁻⁴⁾フェムト秒レーザーを電子線加速器に同期し たシステムが開発されており、1psを切るシステムの最 高時間分解能800fsが達成されている。さらに、SN比 を約1桁向上させる工夫もされている。この装置はフ ェムト秒時間領域での測定が可能であるが、現在で も更なる測定系の拡張と高精度化が現在でも行われ てきた。

しかしながら、レジスト材料分野で求められている 要求に応えられるような十分な情報を得るためには 測定システムが不十分である。レジスト材料に放射線 が入射すると、ポリマーがイオン化され、ポリマーのカ チオンラジカルと電子が生成される。電子は周囲の 分子との相互作用によりエネルギーを失い、熱化す る。熱化電子の平均初期分布距離はおよそ数 nmで あると考えられている。EUVをはじめとしたイオン化 放射線用化学増幅型レジストでは、最初のイオン化 で生成したカチオンラジカルと電子の両方が酸の生 成に重要な役割を果たしている。5-8)それゆえ、ナノメ ータの微細加工では、熱化電子の初期分布距離は 潜像形成において、重要であり、溶媒和電子の生成 過程を知ることが必要である。

これまでの研究から、溶媒和電子の生成過程には 可視部と赤外部に少なくとも二つの活性種が寄与し ていると考えているが、水中で数百フェムト秒、アルコ ール中で数十ピコ秒と見積もられているように、この 溶媒和過程であるために、未だ溶媒和過程を完全に 解明するには至っていない。自動波長切り替えがで きる自動波長可変OPA装置を量子ビーム化学研究 施設クリーンルーム内に設置し、Lバンドライナックの 電子線照射によって生じる短寿命反応中間体を幅 広い波長でプローブできるようになった。本研究では、 現在波長領域1300 nmのテトラヒドロフランの溶媒和 電子とフッ素高分子の解離性電子付着反応の測定 を行ったので報告する。

既存のフェムト秒再生増幅器(Spitfire)の励起光を 波長可変してプローブ光として使用して、幅広い波 長領域(290 nm~2600 nm で反応過程を観察できる ようになったので、波長1300 nmでテトラヒドロフランの 溶媒和電子の観察を行った。図1は波長1300 nmに おけるテトラヒドロフランの溶媒和電子のタイムプロフ ァイルである。また図2に波長1300 nmにおけるテトラ ヒドロフランの溶媒和電子のタイムプロファイルを示す。 このように、1300nmにおける溶媒和電子および溶媒 和電子とフッ素高分子の反応の測定が可能になった。 今後、様々な溶媒およびポリマーを調べ、放射線と 材料の相互作用の解明を行っていく。

図 1. 波長 1300 nm におけるテトラヒドロフランの 溶媒和電子のタイムプロファイル

図 2. 波長 1300 nm におけるテトラヒドロフランの 溶媒和電子とフッ素高分子の反応を示すタイムプ ロファイル

Reference

- T. Kozawa, Y. Mizutani, K. Yokoyama, S. Okuda, Y. Yoshida and S. Tagawa, Nucl. Instrum. Meth. A **429** (1999) 471-475.
- Y. Yoshida, Y. Mizutani, T. Kozawa, A. Saeki, S. Seki, S. Tagawa and K. Ushida, Radit. Phys. Chem. 60 (2001) 313-318.
- T. Kozawa, Y. Mizutani, M. Miki, T. Yamamoto, S. Suemine, Y. Yoshida and S. Tagawa, Nucl. Instrum. Meth. A 440 (2000) 251-254.
- 4) T. Kozawa, A. Saeki, Y. Yoshida and S. Tagawa, Jpn. J. Appl. Phys. **41** (2002) 4208.
- T. Kozawa, S. Nagahara, Y. Yoshida, S. Tagawa, T. Watanabe and Y. Yamashita, J. Vac. Sci. Technol. B15 (1997) 2582-2586.
- S. Nagahara, T. Kozawa, Y. Yamamoto and S. Tagawa J. Photopolym. Sci. Technol. 11 (1998) 577-580.
- S. Tsuji, T. Kozawa, Y. Yamamto, S. Tagawa, J. Photopolym. Sci. Technol. 13 (2000) 733-738.
- 8) S. Tagawa, S. Nagahara, T. Iwamoto, M. Wakita, T. Kozawa, Y. Yamamoto, D. Werst and A. D. Trifunac, SPIE, (2000) 204.

極微細加工材料の放射線誘起反応の解明

北海道大学大学院工学研究院//大学院工学院b、産研量子ビーム物質科学分野 a

岡本一将 a、石田拓也 a、須佐俊彦 a、野村直矢 a、梅垣菊男 b、山本洋揮 b、古澤孝弘 b

Elucidation of Radiation Induced Reactions of Materials for Ultrafine Pattern Fabrication

Faculty/ Graduate School of Engineering, Hokkaido University^a Dept. of Beam Materials Science, The Institute of Scientific and Industrial Research, Osaka University^b

Kazumasa Okamoto^a, Takuya Ishida^a, Toshihiko Susa^a, Naoya Nomura^a, Kikuo Umegaki^a, Hiroki Yamamoto^b, and Takahiro Kozawa^b

Chemically amplified resists have been widely used in the mass production line. The acid generation mechanism induced by ionizing radiation such as extreme ultraviolet (EUV) and electron beam is important for improvement of the resist performance such as sensitivity, roughness, and resolution below 11 nm. However, the details of deprotonation kinetics from the ionized resist solid film immediately after the ionization have been still unclear. In this study, pulse radiolysis of highly concentrated the poly(4-hydroxystylene)(PHS) solutions was performed. The deprotonation reaction in solid state of PHS is assumed more than µs order.

リソグラフィの発展により半導体製品の高性能、 大量生産化が実現されてきた。現在では露光に ArF エキシマレーザー (波長 193 nm) を用いた プロセスにより最小加工寸法 30 nm 以下の半導 体量産が行われている。そしてさらに 13.5 nm の 極端紫外光を用いた EUV リソグラフィが 10 nm 以下の次世代半導体量産技術の候補として期待 されている。加工材料であるレジスト開発におい ては、高解像度、高感度、低 LER (Line Edge Roughness)等の性能を満たす必要がある。加工 線幅がシングルナノメートルまで達すると、レジ スト内の反応がナノサイズレベルで影響するこ とから、EUV 露光により生じるレジスト中での 放射線化学反応機構を解明し、反応を制御する指 針を明らかにすることがレジスト性能向上にと って重要となる。

これまでパルスラジオリシス法により、希薄系 のレジストモデル溶液中で起こる放射線化学反 応機構に関する研究が多く行われてきた。しかし、 実際に固体薄膜として利用されるレジスト中で の放射線化学反応ダイナミクスの詳細はこれま でほとんど明らかにされていない。そのため、 EUV リソグラフィ用固体薄膜レジストの放射線 化学反応を擬似的に求めるため、レジストのベー スポリマーとして用いられるポリヒドロキシス チレン (PHS)の透明性を維持できる高濃度溶液 に対し、電子線パルスラジオリシスによる評価を 行った。さらに、化学増幅型レジスト中での放射 線化学初期過程を明らかにするために、酸発生剤 を加えた系においてパルスラジオリシスを行い、 高分子ラジカルカチオンの脱プロトン反応につ いて評価を行った。

PHS 溶液(溶媒: cyclohexanone, dioxane) に酸 発生剤として TPS-tf を添加したサンプルに対し、 阪大産研 LINAC からの電子線パルスを用い、ナ ノ秒パルスラジオリシスを行った。サンプル調製 は、石英セル(光路長 1 cm)内に初め PHS 濃度 20 wt%程度の溶液サンプルを用意し、その後真 空オーブン内で減圧・加熱を行った。

PHS/シクロヘキサノン溶液のパルスラジオリ シスによって得られたラジカルカチオンの脱プ ロトン反応速度定数と溶液動粘度の PHS 濃度に よる変化を Figure 1 に示す。溶液の動粘度は PHS 濃度とともに増加し、40 wt%付近で急激に増加 することが明らかとなった。動粘度は溶液の高分 子の鎖間の絡み合いに大きく起因することから、 PHS 濃度増加による高分子鎖の運動の減少を示 唆している。一方、脱プロトン反応速度も粘度増 加と共に減少しているが、50 wt%以上ではほと んど変化が見られないことが分かる。従ってこの ような高濃度溶液中では、脱プロトン反応のドナ ー一アクセプター間の配向を含む大きな分子鎖 運動が抑えられることによって脱プロトン反応 が制限され、反応速度定数が 10⁴ s⁻¹ オーダーでほ ぼ一定になることが示唆された。また、固体薄膜 系でも同様になることが予想される。

Figure 2 は化学増幅型レジスト PHS/シクロへ キサノン溶液に酸発生剤 TPS-tf (0, 5, 10 wt%) を

Figure 1 Relation between PHS concentration and viscosity and rate constant of deprotonation in PHS / cyclohexanone solutions.

Figure 2 Kinetic traces in PHS/cyclohexanone solutions (about 50 wt%) with and without TPS-tf observed at 1150 nm obtained by pulse radiolysis.

加えたときの PHS ラジカルカチオンの吸収を示 す波長 1150 nm において得られたタイムトレー スである。酸発生剤を加えると、PHS ラジカル カチオンの吸収強度および脱プロトン反応速度 が減少した。このことは PHS のラジカルカチオ ンが、酸発生剤と電子が反応し生成したアニオン と対イオンを生成することで安定化し、PHS ラ ジカルカチオンの分子内の電荷の拡がりが小さ くなるためであると考えられる。以上のように、 レジスト中の放射線化学反応を理解する上で、酸 発生剤添加による対イオン生成が放射線誘起反 応機構に影響することが明らかとなった。

パルスラジオリシス法による軟 X 線顕微鏡用レジストの高感度化研究

早稲田大学理工学研究所^a、産研ナノ極限ファブリケーション研究分野^b

王楚程 a、保坂勇志 a、鷲尾方一 a*、近藤考文 b、大島明博 b、田川精一 b、吉田陽一 b

Study on Sensitivity Improvement of the Soft X-ray Resist with Pulse Radiolysis

Research Institute for Science and Engineering, Waseda University^a, Dept. of Nano Ultimate Fabrication^b

Chucheng Wang^a, Yuji Hosaka^a, Masakazu Washio^{a*}, Takafumi Kondoh^b, Akihiro Oshima^b, Seiichi Tagawa^b, Yoichi Yoshida^b

ZEP520A is a main-chain scission-type electron beam (EB) resist, and is known for its good spatial resolution and high sensitivity. In our previous work, the radiation-induced early reactions of ZEP520A were investigated with pulse radiolysis in ISIR, and the direct ionization of ZEP520A in tetrahydrofuran was confirmed. Following these results, early reactions in polystyrene and highly concentrated poly (α -allyloxymethyl methyl acrylate) solution in methylethylketone were investigated with pulse radiolysis in the present study. The transient absorption band of multimer phenyl radical cation was observed in the solution.

早稲田大学で開発中の軟 X 線顕微鏡の撮像用 レジスト材料として、ハロゲン系のポリスチレン誘導 体からなる電子線レジスト材料を候補材料としており、 その高感度化を図るために、レジスト反応機構の解 明を目指しパルスラジオリシス法を用いて検討した。 一般に電子線や X 線などの電離放射線により高分 子材料は主鎖切断や架橋反応を誘起する。例えば 代表的な非増幅型のポジ型(分解型)電子線レジスト である ZEP (ゼオン)は、塩素とフェニル環を含む塩 素系ポリスチレン誘導体の一種であり、高い解像度 と優れた感度特性を併せ持つが、その初期反応過 程に関しての情報はほとんどない。¹⁾

我々は、X 線顕微鏡の撮像用レジストとして ZEP を適用することを検討しており、さらなら高感度化を 目的に電子線照射による ZEP の反応機構に関する 研究を生成物分析 ²⁾ならびにパルスラジオリシス法 を用いて研究してきた³⁾。

これまでの実験で、ZEP520A 溶液(ゼオン)から、 再沈殿精製法により ZEP520A を精製し、得られた 粉末試料をテトラヒドロフラン(THF)へ溶解させ、大 阪大学産業科学研究所 L バンド電子ライナックを用 いて、吸光法パルスラジオリシス測定を行った。 ZEP520A を高濃度(500 mM)で THF に溶解させた 試料においては、電荷移動錯体(CT 錯体)とフェニ

今年度の実験では、溶液の粘度を上げることで固 相状態に近づけ、実際の使用環境を模擬できると 考え、THF 環の存在下において溶液の粘度を変え 溶質を動きにくくした環境下での実験を行った。 THF 環を含む高粘度環境を実現するため、ポリα-アリルオキシメチルアクリル酸メチル(日本触媒、以 下THFポリマーと略す)を用いた。THFポリマーはメ チルエチルケトン(MEK)中に溶解した状態であっ たため、予備実験としてMEKにZEP520Aを20 mM 溶解させ吸光法パルスラジオリシス実験を行った。

ルマルチマーラジカルカチオンによる弱い吸収が観 測された。CT 錯体の生成にもフェニルラジカルカチ オンが必要であるため、この結果はフェニルラジカ ルカチオンが生成された事を意味する。一方で溶媒 のTHFに生じたラジカルカチオンは素早く他のTHF 分子と反応し、ラジカルとカチオンに分離するため、 フェニルラジカルカチオンは溶媒のTHFからのホー ル移動では生成されないと考えられる。これらの考 察よりZEP520Aを高濃度溶解させたTHF溶液にお いて、フェニルラジカルカチオンがホール移動では なくZEP520Aの直接イオン化により生成されたもの と結論づけられている³。

^{*} M. Washio, 03-5286-3893, washiom@waseda.jp

Figure 1 Transient absorption spectra in 20 mM ZEP520A solution in MEK

その結果を Figure 1 に示す。

この過渡吸収スペクトルでは 400-500 nm 付近に 弱い吸収帯が存在しており、これはフェニルラジカ ルカチオンの吸収と考えられる。CT 錯体の顕著な 吸収が確認できないのは、ZEP の濃度が低いことや MEK による電子スカベンジングが原因と考えられる が、MEK 中の ZEP520A の溶解度が低いためこれ 以上高濃度の溶液は作成できなかった。

次に、MEK-THF ポリマーを用いてパルスラジオリ シス実験を行った。ZEP520A では溶解度に問題が あるため、まずフェニル基を含む基本的な高分子で あるポリスチレンを溶解させ実験を行った。Figure 2 に近赤外での過渡吸収スペクトルを示す。1100 nm にて幅広い吸収帯が確認された。これはフェニルマ ルチマーラジカルカチオンによる吸収だと考えられ るが、確証を得るためさらにカチオンスカベンジャー として 20 mM のトリエチルアミン(TEA)を添加し実験 を行った。1100 nm における TEA 有無での過渡吸 収挙動を Figure 3 に示す。1100 nm の吸収は TEA の添加により短寿命化したことが明らかであり、フェ ニルラジカルカチオンがこの系でも生成されている ことが確認された。

これらの反応は ZEP520A を溶解させた系での実 験においても期待されるが、MEK 中の ZEP520A の 溶解度が低いという問題がある。

Figure 2 NIR Transient absorption spectra in 200 mM polystyrene and 2.7 M poly (α-allyloxymethyl methyl acrylate) solution in MEK

Figure 3 time dependence of transient absorption in the solution with TEA and without TEA at 1100 nm

今回の結果により高粘度のTHFポリマー環境下で もフェニルマルチマーラジカルカチオンが観測された。 今後はレジストの高感度化への寄与を目指し、THF ポリマー溶液の濃度・粘度を変化させて実際のレジ ストの使用環境を再現し、パルスラジオリシス法による 固体中初期反応の解明を計画している。

Reference

- K. Harada: J. Appl. Polym. Sci. 26 [10] (1981) 3179.
- T. G. Oyama, K. Enomoto, Y. Hosaka, A. Oshima, M. Washio, S. Tagawa: Appl. Phys. Express 5 (2012) 036501.
- Y. Hosaka, T. G. Oyama, A. Oshima, S. Enomoto, M. Washio, S. Tagawa: J. Photopolym. Sci. Tech. 26 [6] (2013) 745.

放射線化学によるシクロパラフェニレンのラジカルイオンの研究

産研励起分子化学研究分野 a、産研量子ビーム科学研究施設 b、京大化研 c

藤塚 守a、藤乗幸子b、岩本貴寛c、茅原栄一c、山子 茂c、真嶋哲朗a

Study on Radical ions of cycloparaphenylenes by Radiation Chemistry

Dept. of Molecular Excitation Chemistry^a, Research Laboratory for Quantum Beam Science^b, Institute for Chemical Research, Kyoto University^c

Mamoru Fujitsuka^a, Sachiko Tojo^b, Takahiro Iwamoto^c, Eiichi Kayahara^c, Shigeru Yamago^c, Tetsuro Majima^a

Cycloparaphenylenes (CPPs) have attracted wide attention because of their interesting properties owing to distorted and strained aromatic systems and radially oriented p-orbitals. For application of CPPs, information on their charged states (radical cation and radical anion) is essential. Here, we measured absorption spectra of the radical cations and the radical anions of CPPs with various ring sizes, over wide spectral region by means of radiation chemical methods. The peak position of the near-IR bands for both the radical cation and the radical anion shifted to lower energies with an increase in the ring size. This trend is contrary to what observed for transitions between HOMO and LUMO of the neutral CPP. The observed spectra of the CPP radical ions were reasonably assigned based on time-dependent density functional theory. These results indicate that the next HOMO and the next LUMO levels are important in the electronic transitions of radical ions.

Cycloparaphenylene (CPP, Fig. 1)は代表的な環状 π-共役オリゴマーであり、高度にひずんだ構造に特 異的な物性を示すことから広く関心を集めている。た とえばCPPのHOMO-LUMOギャップに起因する物性 は鎖長の増加にともない高エネルギー化するなど、 直線状のπ-共役オリゴマーとは逆の傾向を示すこと などが報告されている。CPPはフラーレンなどに対し ホスト分子となることから超分子としての応用が可能 である。CPP類の酸化還元挙動に関する知見は超分 子としての機能の解明に不可欠である。本研究では 低温マトリックス中のCPPにヶ線照射を行うことでラジ カルイオン種を生成し、その吸収スペクトルを近赤外 から紫外域まで測定した。得られた吸収スペクトルを

Fig. 1. Molecular structures of [n]CPPs (n = 6, 8, 10, and 12).

理論計算と比較することで新たな知見を得たので報 告する。¹

Fig. 2にγ-線照射より得られたBuCl低温マトリックス

Fig. 2. Absorption spectra of [n]CPPs (n = 6 (a), 8 (b), 10 (c), and 12(d)) in BuCl glassy matrix after γ -ray irradiation. Numbers near absorption peaks indicate peak positions in nm unit. Blue and red bars indicate oscillator strengths obtained by TDDFT at UB3LYP/6-31G(d) level assuming C_1 and $D_{(n/2)d}$ symmetries, respectively.

Fig. 3. Absorption spectra of [n]CPPs (n = 6 (a), 8 (b), 10 (c), and 12(d)) in MTHF glassy matrix after γ -ray irradiation. Numbers near absorption peaks indicate peak positions in nm unit. Blue and red bars indicate oscillator strengths obtained by TDDFT at UB3LYP/6-31G(d) level assuming C_1 and $D_{(n/2)d}$ symmetries, respectively.

中の[n]CPP (n = 6, 8, 10, 12)ラジカルカチオンの吸 収スペクトルを示す。ラジカルカチオンはいずれも近 赤外領域ならびに紫外可視領域に明瞭なピークを 示し、いずれのピークも鎖長の増加にともない低エネ ルギーシフトを示した。この傾向は中性状態のCPP類 とは逆の傾向である。

得られた吸収ピークに対応する電子遷移を明らか にするため時間依存密度汎関数法による理論計算 を行った。Fig. 2にCiおよびD(m2)d対称を仮定すること で得られたラジカルカチオンの振動子強度を示した。 理論計算で得られた振動子強度より、ラジカルカチ オンの近赤外領域のピークはHOMO-2および HOMO-1からHOMOへの遷移であり、また、紫外可 視領域の吸収は主にHOMO-1 (HOMO-2)から LUMOおよびHOMOからLUMO+1 (LUMO+2)への 遷移であることが示された。

Fig. 3にア線照射より得られたMTHF低温マトリック ス中のCPPラジカルアニオンの吸収スペクトルを示す。 ラジカルアニオンの吸収も近赤外および紫外可視領

Fig. 4. MO levels of neutral [*n*]CPPs (n = 6, 8, 10, and 12) calculated at B3LYP/6-31G(d) assuming $D_{(n/2)d}$ symmetry.

域に明瞭なピークを示し、それぞれが鎖長の増加に ともない低エネルギー側にシフトすることが確認され た。理論計算より、ラジカルアニオンの近赤外吸収は HOMOからLUMOおよびLUMO+1への遷移であり、 また、紫外可視領域の吸収はHOMO-2 (HOMO-3) からHOMOおよびHOMO-1からLUMO (LUMO+1) への遷移であることが示された。

分子軌道のパターンを比較すると、中性分子とラ ジカルカチオンはほぼ同一であり、ラジカルアニオン のHOMOと中性分子のLUMOが同一であることなど から、ラジカルイオン種の近赤外領域の吸収は中性 分子のHOMOとnext HOMOおよびLUMOとnext LUMO間の吸収に起因することが示された。Fig. 4に 中性分子のnext HOMO, HOMO, LUMO, next LUMOのエネルギーレベルを鎖長に対しプロットした。 この図より、next HOMOとHOMOおよびLUMOとnext LUMO間のエネルギー差は鎖長とともに減少する傾 向にあり、そのためラジカルイオン種の吸収が鎖長と ともに低エネルギー化することが示された。

Reference

 M. Fujitsuka, S. Tojo, T. Iwamoto, E. Kayano, S. Yamago, T. Majima: J. Phys. Chem. Lett. 5 (2014) 2302.

シトクロム cの折り畳みに伴うのへムの立体配置変化の研究

産研励起分子化学研究分野

崔 正権^a、Dae Won Cho^b、藤乗幸子^c、藤塚 守^a、真嶋哲朗^{a*}

Configurational Changes of Heme Followed by Cytochrome c Folding Reaction

Dept. of Molecular Excitation Chemistry,^a Korea University,^b Research Laboratory for Quantum Beam Science ^c

Jungkweon Choi,^a Dae Won Cho,^b Sachiko Tojo,^c Mamoru Fujitsuka,^a Tetsuro Majima^{a*}

The configurational change of heme in the Cyt-*c* folding process induced by one-electron reduction has investigated using a combination of time-resolved resonance Raman spectroscopy and pulse radiolysis. The results presented herein reveal that reduction of ferric Cyt-*c* and the ligation of Met80 occur simultaneously within a timescale of approximately 2 μ s, and that the ligand binding and exchange of heme depends on the initial configuration of the heme. The rapid ligation of Met80 observed in this study may be attributed to the intramolecular diffusion of Met80 into ferrous Cyt-*c* with a 5-coordinated high-spin configuration. Conversely, the ligand exchange of a ferrous Cyt-*c* with a 6-coordinated low-spin configuration was significantly slower.

Although various time-resolved spectroscopic techniques have been used to investigate the folding dynamics of Cyt-c in the presence of a denaturant such as guanidine hydrochloride (GdHCl), the dynamics of the heme coordination states accompanied with the electron transfer-triggered folding reaction of Cyt-c are not yet clear. To our knowledge, here, we present the first study on the configurational changes of heme accompanied with Cyt-c folding induced by one-electron reduction using the time-resolved resonance Raman (TR³) spectroscopy combined with pulse radiolysis.¹

In native Cyt-c, the Fe ion of heme coordinates axially with the His18 and Met80 residues of the Cyt-c protein. However, upon addition of GdHCl, the bond between Met80 and the Fe ion is disrupted, resulting in denaturation of the protein. In denatured ferric Cyt-c, the coordination site of met80 is either occupied by a histidine (His33 or His26) to form a 6cLS configuration. Moreover, ferrous Cyt-c is folded in the presence of ~4 M GdHCl, whereas ferric Cyt-c is denatured under same conditions.

The denatured ferric Cyt-*c* exhibited the characteristic v_4 (v(pyrrole half-ring)_{sys}) mode at 1375 cm⁻¹, corresponding to the porphyrin breathing mode, and the v_{10} (v(C α Cm)_{asys}) mode at 1639 cm⁻¹. In addition, the v_2 (v(C β C β)_{sys}) mode, a spin-state marker band, was observed at 1565 and 1588 cm⁻¹, corresponding to 6-coordinated low-spin (6cLS) and 5-coordinated high-spin (5cHS) configurations, respectively. These data indicate that the heme moiety has a mixed configuration under denaturing conditions.

In comparison to the Raman spectrum of

unfolded ferric Cyt-c, ferrous Cyt-c exhibits significantly down-shifted v_4 and v_{10} vibrational modes at 1362 and 1621 cm⁻¹, respectively, which is characteristic of the properly folded ferrous Cyt-c. The v_4 mode is considered an indicator of the oxidation state of heme because of its sensitivity to the electron density of heme. Meanwhile, the v_{10} mode is sensitive to structural changes in a protein. Thus, the down-shifts in both the v_4 and v_{10} modes, observed in the spectrum of ferrous Cyt-c, can likely be attributed to changes in both the oxidation states and in the structures of ferric and ferrous Cyt-c in the presence of ~4 M GdHCl. It is also noteworthy that the v_3 ($v(C_{\alpha}C_m)_{sys}$) mode is more pronounced in the spectrum of ferrous Cyt-*c* than in that of ferric Cyt-c, suggesting that this mode can also be used as an indicator of the folding state of Cvt-*c*.

To investigate the configurational changes of heme during the reduction-induced folding reaction of ferric Cyt-c, we measured the TR³ spectra after pulse radiolysis of ferric Cyt-c in 3.5 M GdHCl. Figure 1 shows the TR³ spectra obtained after pulse radiolysis of unfolded ferric Cyt-c in 3.5 M GdHCl. The TR³ spectrum of the unfolded ferric Cyt-c in 3.5 M GdHCl exhibits v_4 , v_3 , v_2 , and v_{10} modes at 1373, 1505, 1587, and 1639 cm⁻¹, respectively. The observation of the v_2 mode at ~1585 cm⁻¹, which consists of two peaks with centre frequencies of 1564 and 1587 cm⁻¹, indicates that the 6cLS state of heme coexists with the 5cHS state under denaturing conditions. The formation of the unfolded ferric Cyt-c with 6cLS configuration is mediated by His33 (or His26) and His18, whereas formation of the

^{*} T. Majima, 06-6879-8495, majima@sanken.osaka-u.ac.jp

Figure 1. Time-resolved resonance Raman spectra obtained during pulse radiolysis of ferric Cyt-*c* in 3.5 M GdHCl. ([Cyt-*c*] = 50 μ M, $\lambda_{\text{Excitation}}$ = 416 nm)

unfolded ferric Cyt-c with 5cHS configuration is coordinated by the His18 residue alone.

On the other hand, the TR³ spectra measured after pulse radiolysis of unfolded ferric Cyt-c in 3.5 M GdHCl also exhibited v_4 and v_{20} modes at 1362 and 1400 cm⁻¹, respectively, even in the early time-delay (e.g. at 500 ns). These v_4 and v_{20} vibrations are characteristic Raman modes of ferrous Cyt-c, implying that the unfolded ferric Cyt-c undergoes rapid reduction via an electron transfer from the guanidine radical. The time-dependent signal intensity of the v_4 mode at 1362 cm⁻¹ could be well fitted by а tetra-exponential function with relaxation times of 1.4 μ s, 5.4 μ s, 296 μ s, and >5 ms (constant). The fast component of 1.4 µs may be due to the reduction dynamics of ferric Cyt-c because the v_4 mode is very sensitive to the oxidation state of heme. Thus, one interpretation of this observation is that the reduction of ferric Cyt-c occurs either more rapidly than or simultaneously with the ligation of Met80. Chen et al. found that the reduction of oxidized Cyt-c and the ligation of Met80 to the heme iron (Fe^{2+}) occur simultaneously within a 5 µs timescale.² Several other studies have reported that binding of methionine residues (Met80 or Met65) to the heme iron (Fe^{2+}), followed by photodissociation of the CO ligand, takes place within a timescale of a few microseconds (~2 µs). Furthermore, the new v_3 vibrational mode at 1490 cm⁻¹ due to

presence of ferrous Cyt-*c* with the 6cLS heme configuration was observed in the early delay time (500 ns); however, the intensity of this mode was weak. Therefore, we propose reduction of ferric Cyt-*c* and the ligation of Met80 occur simultaneously within ~2 μ s. Meanwhile, the two decay components of 5.4 and 296 μ s probably stem from conformational changes triggered by the reduction of a denatured ferric Cyt-*c* and the ligation of Met80. The slow dynamics of >5 ms (constant) may be due to the rearrangement to the native conformation.

During the folding of ferric Cyt-c, the ligand exchange from His18-Fe³⁺-His33 (or His18-Fe³⁺-His26; 6cLS) to His18-Fe³⁺-Met80 (6cLS) occurs via a 6-coordinate intermediate linked to a water molecule as a distal ligand. Consequently the dynamics of this reaction are very slow. The data presented herein show that ferric Cyt-c, under denaturing conditions, exists in both the 6cLS and 5cHS forms. Oellerich et al suggested that, similar to the formation of an unfolded ferric Cyt-c, the formation of an unfolded ferrous Cyt-c with a 6cLS heme might also be mediated by His-18 and His-33. Given the folding dynamics of ferric Cyt-c, one would predict that the ligand exchange from His18-Fe²⁺-His33 His18-Fe²⁺-His26) (or to His18-Fe²⁺-Met80 during the protein folding reaction would be slow. Indeed, the v_2 mode at 1565 cm⁻¹ of ferrous Cyt-*c*, corresponding to the 6cLS configuration, was measured with a weak intensity even in the late delay time of 5 ms, as shown in Figure 1. In contrast, the v_2 mode of 1586 cm⁻¹, corresponding to the 5cHS configuration of ferrous Cvt-c, was undetectable, suggesting a rapid ligand binding process. This result indicates that the ligand binding and exchange of heme depends on the initial coordination state of the heme molecule even though the reduction dynamics of ferric Cyt-c occur within a timescale of a few microseconds. That is, the ligand binding of ferrous Cyt-c with the 5cHS configuration, generated by pulse radiolysis, is relatively fast, whereas ferrous Cyt-c with the 6cLS configuration exhibits slow reaction dynamics. The fast ligation of Met80 can likely be attributed to the intramolecular diffusion of Met80 to a reduced ferrous Cyt-c with a 5cHS configuration.

In conclusion, the resulte presented herein show that the ligand binding and exchange of heme depends on the initial coordination state of the heme molecule even though the reduction dynamics of ferric Cyt-c occur within a timescale of a few microseconds.

References

- 1) J. Choi et al.: Mol. Biosyst. 11 (2015) 218.
- 2) E. F. Chen: J. Am. Chem. Soc. 121 (1999) 3811.

ビフェニル誘導体及びそれらのラジカルカチオンの構造に対する研究

産研励起分子化学研究分野

崔 正権^a、Dae Won Cho^b、藤乗幸子^c、藤塚 守^a、真嶋哲朗^{a*}

Structural Study of Various Substituted Biphenyls and their Radical Anions Based on Time-resolved Resonance Raman Spectroscopy Combined with Pulse Radiolysis

Dept. of Molecular Excitation Chemistry,^a Korea University,^b Research Laboratory for Quantum Beam Science ^c

Jungkweon Choi,^a Dae Won Cho,^b Sachiko Tojo,^c Mamoru Fujitsuka,^a Tetsuro Majima^{a*}

The structures of various *para*-substituted biphenyls (Bp-X; X = -OH, -OCH₃, -CH₃, -H, -CONH₂, -COOH, and -CN) and their radical anions (Bp-X[•]) were investigated by time-resolved resonance Raman spectroscopy combined with pulse radiolysis. The inter-ring C1-C1' stretching modes (v₆) of Bp-X were observed at ~1285 cm⁻¹, whereas the v₆ modes of Bp-X[•] with an electron donating or withdrawing substituent were significantly up-shifted. The difference (Δf) between the v₆ frequencies of Bp-X and Bp-X[•] showed significant dependence on the electron affinity of the substituent and exhibited a correlation with the Hammett substituent constants (σ_p).

Biphenyl (Bp-H), which consists of two benzene rings with weak electronic interactions, has been experimentally and theoretically investigated to understand its structure in gas, liquid, and solid phases.

_ENREF_1_ENREF_1_ENREF_1_ENREF_

8 ENREF 9As a result, it is well known that in the gas and liquid phases, Bp-H has a twisted structure owing to steric hindrance between the ortho hydrogen atoms, whereas in the solid state Bp-H has a planar structure. In contrast to neutral Bp-H, its radical ions (radical anion Bp-H*- and radical cation Bp-H^{•+}) tend to have a quinoidal character, resulting in a planar structure even in the liquid phase. However, there are a number of arguments for the structure of Bp-H^{•-} and Bp-H^{•+} in solution. In addition, most studies have been focused on halogen-substituted biphenyls, because of the pollution concerns related to polychlorinated biphenyls (PCB). Here, we present the comparative investigation of the structures of Bp-X and Bp-X⁻⁻ with electron donating or withdrawing substituents at the para position using TR³ spectroscopic measurements combined with pulse radiolysis.1 Theoretical calculations for the structures of Bp-X and Bp-X^{•-} are also conducted and compared with the experimental results.

Figures 1 shows the representative Raman spectra of Bp-X and Bp-X^{•-} in DMF. The TR³ spectra of Bp-X^{•-} were measured with a delay of 50 ns after the electron pulse irradiation by pulse radiolysis in DMF. The v₆ modes for Bp-H and Bp-H^{•-}, observed at 1286 and 1327 cm⁻¹, respectively. Notably, the v₆ modes for Bp-Xs are observed at 1286~8 cm⁻¹, which are close to that of Bp-H. These results imply that the structures of Bp-Xs are not affected by the

Figure 1. Representative TR³ spectra of Bp-X (top line) and Bp-X[•] (bottom line) in DMF; Bp-H (a), Bp-OH (b), and Bp-CN (c). TR³ spectra of Bp-X[•] were measured with a delay of 50 ns after the radiation of electron pulse during the pulse radiolysis of Bp-H, Bp-OH and Bp-CN in DMF.

substituents attached at the *para* position (C₄) of the phenyl ring. Furthermore, the theoretically calculated D and $r_{C1-C1'}$ values for all Bp-Xs showed little change. This result supports the hypothesis that the twisted structure is attributable to the repulsion of the *ortho* hydrogens, and not the electronic properties of the *para* substituents.

On the other hand, the v_6 mode of Bp-X^{•-} is markedly up-shifted. The up-shift of the v_6 mode

^{*} T. Majima, 06-6879-8495, majima@sanken.osaka-u.ac.jp

accompanied by the one-electron reduction has been interpreted in terms of the structural change from Bp-X to Bp-X[•] with a quinoidal character. Interestingly, the largest difference (Δf) between the v₆ frequencies of Bp-X and Bp-X^{•-} was observed for Bp-H. Numerous experimental and theoretical results indicate that Bp-H^{\bullet -} has a shorter $r_{C1-C1'}$ than Bp-H, and that it has a planar structure due to the quinoidal character ($D_{Bp-H^{\bullet-}} = \sim 0^{\circ}$). However, the results presented herein clearly show that the Δf values for other Bp-Xs are smaller than that of Bp-H. This may be attributed to the weak quinoidal character of Bp-X^{•-} compared to that of Bp-H^{•-}, owing to the presence of electron donating or withdrawing substituents. The smaller Δf values, compared to Bp-H^{•-}, indicate that Bp-X^{•-} may have a slightly twisted structure. Furthermore, the difference (Δf) between the v₆ frequencies of Bp-X and Bp-X^{•-} showed significant dependence on the electron affinity of the substituent and exhibited a correlation with the Hammett substituent constants (σ_p).

The opposite effect of electron donating and withdrawing substituents on the Δf values, shown in Figure 2, can be interpreted by considering the different distributions of the unpaired electron and negative charge densities of the two benzene rings in Bp-X^{•-}. To date, it is well known that the planarity of Bp-H^{•-} is predominantly due to the π -electron delocalization, which results in an increase in the quinoidal character of the two benzene rings i.e., the delocalizations of the unpaired electron and charge densities of the two benzene rings in Bp-H^{•-} are the substitution equal. However, of the para-hydrogen atom with an electron donating or withdrawing group should result in unequal negative charge densities on the two benzene rings, even in the ground state. In addition, Mönig et al. suggested that the radical cations of PCBs in DCE show a twisted structure, wherein the unpaired electron and the positive charge are localized mainly on one ring.² Taking benzene into account the $\sigma_{\rm p}$ -dependence of the Δf values of Bp-X, observed in the present study, and the twisted structure of Bp-X*, we conclude that, with or without a substituent, the unpaired electron and negative charge in Bp-X*substituted with an electron donating or withdrawing group may be localized on one benzene ring. Indeed, theoretical calculations show that in the case of Bp-X^{•-} with an electron donating group, the sum of the spin and charge density for the unsubstituted benzene ring is larger than those for the substituted benzene ring. However, in the case of Bp-X^{•-} with an electron withdrawing group, the sum of the spin and charge density for the unsubstituted benzene ring is smaller than that for the substituted benzene ring. This result indicates that the unpaired electron and negative charge density in Bp-X⁻⁻ substituted with an

Figure 2. Plots of the frequency difference (Δf) against Hammett σ_p constants for Bp-Xs. The frequency difference ($\Delta f = f_{Bp-X-}f_{Bp-X-}$).

electron donating group are located predominantly on the unsubstituted benzene ring, whereas those in Bp-X[•] substituted with an electron withdrawing group are located predominantly on the substituted benzene ring. Moreover, this result supports the hypothesis that the position of the unpaired electron and negative charge in Bp-X^{•-} significantly depends on the electron affinity of the substituent. These experimental and theoretical results suggest that the twisted structure of Bp-X^{•-} is due to the localization of the unpaired electron and negative charge on one benzene ring and that the opposite effect caused by electron donating and withdrawing groups on the Δf value stems from the unequal distribution of the spin and charge densities between the two benzene rings in Bp-X^{•-}.

In conclusion, the structure of Bp-X*- is significantly affected by the electron affinity of the substituent, while Bp-X has a twisted structure regardless of the type of substituent. In addition, the Δf values clearly show a linear correlation with the $\sigma_{\rm p}$ values for both electron donating and withdrawing groups. From the theoretical and experimental results, we show that Bp-X^{•-} substituted with an electron donating and withdrawing group at the para position has a slightly twisted structure, whereas Bp-H^{•-} has a planar geometry. The twisted structure of Bp-X^{•-} is due to the localization of the unpaired electron and negative charge on one benzene ring. Moreover, the unpaired electron and negative charge in Bp-X^{•-} substituted with an electron donating group are located on the unsubstituted benzene ring, whereas those in Bp-X^{•-} substituted with an electron withdrawing group are located on the substituted benzene ring.³

References

- 1) J. Choi et al.: Mol. Biosyst. 11 (2015) 218.
- 2) J. Mönig: J. Chem. Soc. Perkin Trans. 2 (1986) 891.
- 3) J. Choi et al.: J. Phys. Chem. A on the web. DOI: 10.1021/jp511229t.

L バンド電子ライナックによる偏光高強度 THz 光を用いた固体電子状態の研究

摂南大学[。] 産研量子ビーム発生科学研究分野^b

東谷篤志 **、入澤明典 b、加藤龍好 b、川瀬啓悟 b、磯山悟朗 b

Electronic states of solids probed by IR-THz spectroscopy using FEL light source from L-band linac at ISIR

Industrial Technology of Wakayama Prefecture^a Dept. of Accelerator Science^b

A. Higashiya^a*, A. Irizawa^b, R. Kato^b, K. Kawase^b and G. Isoyama^b

Infrared spectroscopy is an effective technique for direct observing electronic states of solids. A terahertz free-electron-laser (THz-FEL) at the Institute of Scientific and Industrial Research (ISIR) in Osaka University is one of the most intense light source in a far infrared region. It has also possibilities as a pump source because of its huge peak power with the short pulse length. Meanwhile this also has a linear polarized character originating in the undulating electrons through the wiggler. A circular polarized THz light can be reconstructed from 90 degree phase shifted linear polarized ones. These characteristic THz-FEL will be the key for developing new experimental physics of solids in THz region.

(背景と目的)

量子ビーム発生科学研究分野では、産業科学研 究所附属の量子ビーム科学研究施設において Lバンド電子ライナックを用いた THz-遠赤外 自由電子レーザー(以下、ISIR-FEL)の開発・ 利用研究を行っており、様々な研究分野におけ る内部および外部ユーザー利用の開拓を推進 している。高強度性、短パルス性、単色性、偏 光特性を兼ね備える ISIR-FEL に対しての利 用方法は大きく分けてエネルギー(もしくは波 長)分散測定(分光測定)、時間応答測定、お よび空間分散観測 (イメージング) があげられ るが、本研究ではこれらを組み合わせた様々な 利用実験を模索しており、今回は THz 領域の イメージングの可能性についてビームライン の現状と改良点について報告する。THz 光は その波長の長さが回折限界として~100um 程 度の空間分解能に対する制限となってくるこ とが知られているが、利用方法としては強相関 固体電子物質における相分離や生体内の癌細 胞における含水特性評価など様々な分野にわ たる活用が期待できる。空間分解能向上の一つ の方法として近接場光の検出による分解能の 拡張が精力的に研究されているが、探針による

スキャンなどの点でデメリットもあり、限られ た実験環境に制限されるのが現状である。 本研究ではこれまで集光したテラヘルツ光を 用いて試料のラスタースキャンにより高分解 高速分光イメージングを行った。従来の手法で ありながら高速かつ分光イメージングを可能 にし、物質固有の吸収に伴った分布イメージン グが可能となった。また、光源の高度化に伴い、 拡散光においてもテラヘルツカメラでの検出 限界を上回る輝度が得られており、マルチアレ イによる 1 ショットイメージングが可能とな った。

(研究方法)

実験は大阪大学産業科学研究所附属量子ビーム科学 研究施設のL-バンドライナックを用いたISIR-FELで行 った。マクロパルス周波数は5Hz、最大強度10mJ程度、 100µm径程度まで集光することによって電場強度は 10MV/cm強に及ぶ。イメージングはビームをテラヘルツ レンズによって200µm程度に集光、もしくは内径8mmφ の銅パイプをライトパイプとして用い、8mmφ程度の 拡散光にして観測対象物に照射し、検出器もしくはテ ラヘルツカメラにより測定した。

(結果および考察)

分光イメージングは CuO, Cu₂O の粉末をポリ

図 1 銅酸化物 CuO,Cu2O の吸収ピーク
67.0µm(左),68.0µm(右)それぞれの
波長での分光イメージング

プロピレンパウダーに混合し、ペレット化した ものを用いて透過モードで行った。CuO, Cu₂O は波長 67.0µm, 68.0µm といったわずかにずれ た吸収ピークを持つ (図1上)。実験の結果、 それぞれの波長でのイメージの濃淡が明確に 反転した(図1下)。これにより、わずかな構 造変化による固体物質のフォノンピークの変 調や、近傍環境のわずかに異なる分子結合の振 動・回転モードなど、物質の分散や相平衡の乱 れといった興味深い物質状態の空間分布の直 接観測が可能となった。今後は線分析、面分析 などスペクトルの同時取得に発展していく予 定である。次にテラヘルツカメラを用いた 1 ショットイメージングの結果を示す。テラヘル ツ光は当初レンズ系による拡散平行化を試み たが、テラヘルツカメラである程度均一に観測 できる程度の先頭値の平坦化は不可能であっ たため、先に述べたように銅管内を反射散乱通 過させることによって局所的な空間分布の緩 和を行った。ナイフエッジは鮮明に観測できて おり、M2のネジ山(ピッチ0.7mm)の観測や、 両面テープ内部の格子状の繊維サポート部の

透過像など、明確に観測されている。テラヘル ツ光の空間分布の不均一やテラヘルツカメラ との同期の問題などいくつかの技術的改良点 は必要であるが、10mmφ程度に広げられた光 を用いれば 5Hz 間隔での1 ショットイメージ ングが可能であることを示す結果となった。

Reference

- 入澤明典,川瀬啓悟,加藤龍好,藤本將輝, 矢口雅貴,堤亮太,船越壮亮,磯山悟朗, 東谷篤志"遠赤外・テラヘルツ自由電子レ ーザーの最近の展開"第4回光科学異分 野横断萌芽研究会(2014年8月6日)
- <u>Akinori Irizawa</u>, Ryukou Kato, Keigo Kawase, and Goro Isoyama, 'Current condition and Utilization Environment of ISIR THz-FEL' The 18th SANKEN International Symposium 2014, Dec.10.2014.
- 入澤明典,川瀬啓悟,加藤龍好,藤本將輝, 矢口雅貴,堤亮太,船越壮亮,磯山悟朗, 東谷篤志 "高強度テラヘルツ FEL の利用 展開" 第 21 回 FEL と High-Power Radiation 研究会

低線量放射線による影響の解明に向けた自動細胞解析手法の研究

1)福井大学附属国際原子力工学研究所、2)大阪大学産業科学研究所 ナノテクノロジーセンター、

戸田圭哉¹、松尾 陽一郎^{※1}、平山誠¹、泉佳伸¹、安田仲宏¹、誉田義英²

Study of fully automated analyzing system

for the study of low-dose radiation effects on cellular radiobiology

¹⁾Research Institute of Nuclear Engineering, University of Fukui, Japan. ²⁾Nanoscience and Nanotechnology Center, ISIR, Osaka University

Keisuke Toda¹, Youichirou Matuo^{**1}, Makoto Hirayama¹, Yoshinobu Izumi¹, Nakahiro Yasuda¹ and Yoshihide Honda²

Health risks from low-dose radiation has a concern for the potential risks from environmental and clinical radiations, especially after the Fukushima nuclear disaster, even public people has a great interest about the risks of low-dose radiation. Since experimental signal changes are extremely rare on DNA strand breaks and/or cell survivals at low-dose region, in the current situation, experimental data in this region with statistical significance are very difficult to obtain because of the need for large number of samples. We have been developed a fully automated colony counter system by utilizing the nuclear track detection technologies in order to verify radiation damage on cellular radiobiology such as the cell survival at low-dose region. As a sample to use in this research, the colonies were prepared from the cell which irradiated gamma-rays.

【研究背景】

放射線による人体影響は確定的影響と確率的 影響の2種類に大別され、DNAの損傷に引き続 く細胞死など細胞の状態が関係していることが 分かっている。しかしながら、特に低線量域での 影響に関しては、科学的に解明できていない事項 も存在し¹⁾、国民の不安に明解に応えられてない ことも事実である。低線量域における影響の発生 頻度は低く(例:マウスの性細胞の突然変異誘発 率は10~100万個に1個の事象²⁾)、他の要因に 隠れてしまうことが解明できていない主な原因 であると考えられている。

我々は、低線量放射線による影響解明へのア プローチとして人体影響に関連している「細胞で の影響」に着目し、画像解析³⁾などの工学的手法 を導入することにより大統計量で影響研究を可 能にする手法の開発を行っている。放射線照射に よる細胞からのシグナル測定(放射線細胞影響研 究)の一連の操作を機械に置き換えて自動化する ことで、最終的には大量のサンプル処理によって 稀な事象を再現性よく検出するためのシステム 構築を目指すものである。

本年度は、基礎データの取得を目的として、 生体影響の指標となるサバイビングフラクショ ンを求めるための実験系の立ち上げを行った。

【実験内容】

本研究では、放射線生物学の分野で標準的に用 いられているチャイニーズハムスターの卵母細 胞由来 (Chinese Hamster Ovary Cells)の CHO-K1 細胞を対象とした。CHO-K1 細胞の培養は、二酸 化炭素濃度 5%、37℃の環境下で行った。T25 フ ラスコ(FALCON)に 5×10⁵ 個の CHO-K1 細胞を入 れ、7ml の 10%の牛胎児血清を含む Ham's F-12 培地を加えたものをサンプルとした。CHO-K1 細胞の計数は、TC-20(Bio-rad)を用いた。産業科 学研究所の Dog82 線源を用い、0.01、0.05、1Gy のガンマ線を照射した。照射後、各線量につき

^{*}Youichirou Matuo, y-matsuo@u-fukui.ac.jp

10 枚の9 センチ細胞培養皿あたり 3×10² 個の細 胞を播種し、10 日間培養した。メタノールで細 胞を固定後、5mg/ml クリスタルバイオレット溶 液で染色し、コロニー数を計測した。ここで 50 個以上の細胞集団をコロニーとして、コロニー数 を計数した。一般的に、生存率は、式(1)のよ うに定義される。

また、未照射の細胞の生存率を1とした時の照射 された細胞の生存率を比較することで、生存曲線 を作成した。この指標はサバイビングフラクショ ン(SF)と定義され、式(2)で表される[2]。

SF = <u>吸収線量</u> D(Gy) での生存率 未照射での生存率 ... (2)

生体影響の指標となるサバイビングフラクショ ンを求めるための実験の流れを図1に示す。

【結果】

図1にガンマ線を照射した場合の生存曲線を 示す。ガンマ線の吸収線量の増加に対してサバイ ビングフラクションが低下することが示された。 0.01Gy および 0.05Gy の低線量域については、エ ラーバーが大きく、未照射の場合と有意差は見ら れなかった。本年度はガンマ線の照射実験の系が 確立できた。次年度以降、線量ごとのサンプル数 を増やし、実験操作の一部を機械に置き換えて自 動化することで、大統計量を背景とした低線量放 射線による影響の解明へつなげていく計画であ る。

謝辞

本研究の成果の一部は、平成 26 年度 福井県「原 子力防災・危機管理」教育研究推進事業の支援を 受けて実施された。

Reference

- 1) ICRP Publication 99.: (2005).
- 2) Rusell *et al*.: Proc. Natl. Acad. Sci. USA., **79**, pp.542-544, (1982).
- N. Yasuda et al.: Radiation Measurements, 40 (2005) 311.
- Barendsen et al., International journal of Oncology, 19, 247-256, (2001).

サバイビングフラクション

図 1 生体影響の指標となるサバイビ ングフラクションを求めるための実験 の流れ。

図 2 ガンマ線を照射した場合の CHO-K1 細胞の生存曲線。n=10。エ ラーバーは SD。